
Week 13 - Wednesday

 What did we talk about last time?
 A little bit about computability
 Approximation algorithms
 Started load balancing

 A sociologist named McSnurd gave a talk about a community that
has clubs with the following attributes:
 A person can belong to more than one club
 Each club is named after a person
 No two different clubs are named after the same person
 Every person has a club named after him or her
 A person may or may not belong to the club named after them
▪ If they do, that person is called sociable
▪ If they don't, that person is called unsociable

 Perhaps surprisingly, there is a club whose entire membership is made up
of all of the unsociable people

 Do you believe McSnurd's description?

 Another sociologist named McSnuff described a similar
community:
 As before, there is the same number of clubs as people, and each club is

named after exactly one person
 However, a person can be a member of a club openly or secretly
▪ If a person is not openly a member of the club named after them, they are suspicious
▪ If a person is secretly a member of the club named after them, they are a spy

 Perhaps surprisingly, there is a club whose entire membership is made up
of all the suspicious people

 Do you believe McSnuff's description?
 Do you know whether or not there is at least one spy in the

community?

 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running

as early as possible
 Unfortunately, doing so in NP-hard

 We can use a simple greedy algorithm for assigning jobs:
 For each job j, assign it to the machine that has the shortest

completion time so far

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi

 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –
tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 But the optimal makespan must be at least as big as any job,

thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗, thus:
𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ + 𝑇𝑇∗ = 2𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 We use a similar greedy algorithm
 However, we first sort all the jobs in descending order
 Now, t1 ≥ t2 ≥ … ≥ tn
 If there are m jobs or fewer, our algorithm will be optimal, since

each machine will get at most one job
 If there are more than m jobs, 𝑇𝑇∗ ≥ 2𝑡𝑡𝑚𝑚+1
 Consider the first m + 1 sorted jobs.
 Each takes at least tm+1 time. Since there are at least m + 1 jobs and only m

machines, one machine will get at least two of these jobs.
 That machine will have processing time at least 2tm+1.

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi, and assume that Mi has at least 2 jobs
 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –

tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 Note that j ≥ m + 1, since the first m jobs will be put on m different

machines
 Thus, 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑚𝑚+1 ≤

1
2
𝑇𝑇∗

 But the optimal makespan must be at least as big as any job, thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗,
thus:

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ +
1
2
𝑇𝑇∗ =

3
2
𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 We have a set S of n sites, like towns
 We want to build k centers, like Starbucks
 We want to minimize the distance from a site to its closest

facility, called the covering radius
 Distances obey the following rules:
 d(s, s) = 0
 d(u, v) = d(v, u)
 d(x, y) + d(y, z) ≥ d(x, z)

 Put one facility in the middle of all the cities
 Keep adding centers to reduce the worst outlier
 First, it's not clear how to pick later centers
 Second, we can show that this could be arbitrarily bad with 2

cities and 2 centers
 First Starbucks would go right between the two cities
 Second one would go…where?
 Obviously, the best locations would be right on top of the cities

 Imagine that we knew that the maximum radius of cover was r
 We could use this knowledge to get a covering radius of no

more than 2r
 Algorithm:
 Pick any city, put a Starbucks there
 Remove any cities within 2r of the city
 Keep going as long as there are cities in the set

 Proof by contradiction:
 Suppose the opposite, that the algorithm returns more than k, but

for optimal sites C* of size k, the covering radius r(C*) ≤ r.
 Now we want to consider the elements c ∈ C, the sites returned by

the algorithm, and the elements c* ∈ C*, the optimal sites.
 Say that centers c and c* are close if d(c, c*) ≤ r.
 Every center c was a site in the original problem, so there has to be at

least one center c* that is close.
 We want to show that no optimal center c* can be close to two

different greedy centers c and c'.

 By the design of our algorithm, all centers c, c' ∈ C are more than
2r away from each other.

 Because of the triangle inequality, d(c, c*) + d(c*, c') ≥ d(c, c') > 2r.
 Thus, no c* could be within r of both without breaking this

inequality.
 That means every c ∈ C must have at least one close c* that no

other c' does.
 Thus, each c has exactly one c* not shared by any other, making

|C*| ≥ |C| > k, contradicting the assumption that C* has at most k
centers.

∎

 We know that r > 0 and r is less than or equal to maximum
distance between any two sites
 We could binary search between those two values

 Instead, our algorithm that magically knew r only used it to
pick sites 2r or further from existing centers

 So…all we really need to do is pick sites that are far away from
our existing centers

 Assume k < |S|, otherwise pick all sites
 Select any site s to start with and let C = {s}
 While |C| < k
 Find a site s ∈ S that is as far away as possible from every element in

C
 Add s to C

 Return C as the selected set of centers

 Claim:
 Our new greedy algorithm returns a set C of k points such that r(C) ≤

2r(C*) where C* is an optimal set of k points.
 Proof by contradiction:
 Assume we got a set C with k centers such that r(C) > 2r.
 There is some site s that is more than 2r from every center in C.
 At some point in the algorithm, we have only selected centers C'.
 We are just about to add center c'.

 We claim that c' is at least 2r away from all sites in C' because of
this inequality:
 d(c', C') ≥ d(s, C') ≥ d(s, C) > 2r

 So our greedy algorithm follows the first k iterations of the
algorithm that knew r since it always picks a center more than 2r
from previously selected centers.

 But we proved that algorithm would only pick more than k
centers if the optimal k centers did not have a covering radius of r.

 By the same contradiction, no site s can be further than 2r from a
center, so r(C) ≤ 2r.

∎

 Given:
 Set U of n elements
 Collection of sets S1, S2,…, Sm of subsets of U
 Each subset Si has a weight wi ≥ 0

 Find the subsets with smallest total weight whose union is
equal to all of U

 We want the most bang for our buck
 We want small weight sets with a lot of elements
 In other words, low cost per element

 So, we look at the value wi/|Si| for each set, and pick the
lowest such value set

 We keep doing that, but we only "count" the elements in each
set that still aren't covered

 Start with R = U and no sets selected
 While R≠ ∅
 Select set Si with minimum wi/|Si ∩ R|
 Delete set Si from R

 Return the selected sets

1

1

1

1

1 + ε 1 + ε
Algorithm

finds a total
weight of 4

Optimal is a
total weight of

2 + 2ε

 How good (or bad) is our set cover approximation in the worst
case?

 Let's think about the cost per item incurred by each set we add:
 cs = wi/|Si ∩ R| for all s ∈ Si ∩ R
 Imagine we assign that cost in the algorithm when we cover those

elements
 Clearly, these cs values end up being the total weight of our

solution C:

�
𝑠𝑠𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 To bound our analysis, we will use the idea of the harmonic
function:

𝐻𝐻 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑖𝑖

= 1 +
1
2

+
1
3

+ ⋯+
1
𝑛𝑛

 This function grows…slowly but infinitely
 You might recall that H(n) is Θ(log n)

 Claim:
 For every set Sk, ∑𝑠𝑠∈𝑆𝑆𝑘𝑘 𝑐𝑐𝑠𝑠 is at most H(|Sk|)wk

 Proof:
 For notation, assume |Sk| = d, and Sk = the first d elements of U
 In other words, Sk = {s1, s2, …, sd}
 Even better, let's assume the elements are labeled in the order that

they are assigned a cost 𝑐𝑐𝑠𝑠𝑗𝑗

 Consider the iteration when sj is covered by our algorithm, for
some j ≤ d.

 Before this iteration, sj, sj+1,…,sd∈ R
 This implies that |Sk ∩ R| is at least d – j + 1, making the average

cost of set Sk at most
𝑤𝑤𝑘𝑘

|𝑆𝑆𝑘𝑘 ∩ 𝑅𝑅|
≤

𝑤𝑤𝑘𝑘
𝑑𝑑 − 𝑗𝑗 + 1

 On this particular iteration, the greedy algorithm selects a set Si of
minimum average cost
 Thus, Si has an average cost no more than Sk

 The average cost of Si is what will get assigned to sj, so

𝑐𝑐𝑠𝑠𝑗𝑗 =
𝑤𝑤𝑖𝑖

|𝑆𝑆𝑖𝑖 ∩ 𝑅𝑅|
≤

𝑤𝑤𝑘𝑘
|𝑆𝑆𝑘𝑘 ∩ 𝑅𝑅|

≤
𝑤𝑤𝑘𝑘

𝑑𝑑 − 𝑗𝑗 + 1
 Summing up all the costs for every element s ∈ Sk

�
𝑠𝑠∈𝑠𝑠𝑘𝑘

𝑐𝑐𝑠𝑠 = �
𝑗𝑗=1

𝑑𝑑
𝑐𝑐𝑠𝑠𝑗𝑗 ≤�

𝑗𝑗=1

𝑑𝑑 𝑤𝑤𝑘𝑘
𝑑𝑑 − 𝑗𝑗 + 1

=
𝑤𝑤𝑘𝑘
𝑑𝑑

+
𝑤𝑤𝑘𝑘
𝑑𝑑 − 1

+ ⋯+
𝑤𝑤𝑘𝑘
1

= 𝐻𝐻(𝑑𝑑) � 𝑤𝑤𝑘𝑘
∎

 Let d* be the size of the largest set
 Claim:
 Set cover C found by our greedy algorithm has weight at most H(d*)

times the optimal weight w*
 Proof:
 The optimal set cover C* has weight 𝑤𝑤∗ = ∑𝑆𝑆𝑖𝑖∈𝐶𝐶∗ 𝑤𝑤𝑖𝑖
 By our previous proof:

𝑤𝑤𝑖𝑖 ≥
1

𝐻𝐻(𝑑𝑑∗)
�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠

 Since C* is a set cover

�
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 Putting it all, insanely, together:

𝑤𝑤∗ = �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

𝑤𝑤𝑖𝑖 ≥ �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

1
𝐻𝐻(𝑑𝑑∗) �

𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 ≥
1

𝐻𝐻 𝑑𝑑∗ �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠 =
1

𝐻𝐻 𝑑𝑑∗ �
𝑆𝑆𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖

∎

 All of that madness means that our approximation algorithm
to set cover might return a set cover costing O(log d*) times
the true optimal

 Worse, d* could be some constant fraction of n, making the
approximation an O(log n) times worse than optimal

 This approximation is worse than any constant
approximation, since our approximation actually will degrade
as n gets larger

 To top it off, there's even a proof that this is the best you can
approximate set cover, unless P = NP

 Approximating knapsack
 Read section 11.8

 Work on Assignment 7
 Due the last day of class

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Revenge of the logical warmup
	Load Balancing
	Load balancing
	Greedy algorithm
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Improved approximation algorithm
	Sorted greedy algorithm gets a makespan T ≤ 𝟑 𝟐 T*
	Proof continued
	Center Selection
	Bad greedy algorithm
	Insight for better greedy algorithm
	If more than k centers are returned, the best covering radius > r
	Proof continued
	Without knowing r
	Updated greedy algorithm
	Proof of approximation bound
	Proof continued
	Three Sentence Summary of Set Cover
	Set cover (optimization version)
	Algorithm design
	Greedy set cover algorithm
	Set cover example
	Analysis
	Unfortunately: math
	Bound on each set
	Proof continued
	Proof continued
	Final approximation bound
	Approximation bound continued
	Log approximation
	Upcoming
	Next time…
	Reminders

