
Week 13 - Wednesday

 What did we talk about last time?
 A little bit about computability
 Approximation algorithms
 Started load balancing

 A sociologist named McSnurd gave a talk about a community that
has clubs with the following attributes:
 A person can belong to more than one club
 Each club is named after a person
 No two different clubs are named after the same person
 Every person has a club named after him or her
 A person may or may not belong to the club named after them
▪ If they do, that person is called sociable
▪ If they don't, that person is called unsociable

 Perhaps surprisingly, there is a club whose entire membership is made up
of all of the unsociable people

 Do you believe McSnurd's description?

 Another sociologist named McSnuff described a similar
community:
 As before, there is the same number of clubs as people, and each club is

named after exactly one person
 However, a person can be a member of a club openly or secretly
▪ If a person is not openly a member of the club named after them, they are suspicious
▪ If a person is secretly a member of the club named after them, they are a spy

 Perhaps surprisingly, there is a club whose entire membership is made up
of all the suspicious people

 Do you believe McSnuff's description?
 Do you know whether or not there is at least one spy in the

community?

 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running

as early as possible
 Unfortunately, doing so in NP-hard

 We can use a simple greedy algorithm for assigning jobs:
 For each job j, assign it to the machine that has the shortest

completion time so far

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi

 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –
tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 But the optimal makespan must be at least as big as any job,

thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗, thus:
𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ + 𝑇𝑇∗ = 2𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 We use a similar greedy algorithm
 However, we first sort all the jobs in descending order
 Now, t1 ≥ t2 ≥ … ≥ tn
 If there are m jobs or fewer, our algorithm will be optimal, since

each machine will get at most one job
 If there are more than m jobs, 𝑇𝑇∗ ≥ 2𝑡𝑡𝑚𝑚+1
 Consider the first m + 1 sorted jobs.
 Each takes at least tm+1 time. Since there are at least m + 1 jobs and only m

machines, one machine will get at least two of these jobs.
 That machine will have processing time at least 2tm+1.

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi, and assume that Mi has at least 2 jobs
 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –

tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 Note that j ≥ m + 1, since the first m jobs will be put on m different

machines
 Thus, 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑚𝑚+1 ≤

1
2
𝑇𝑇∗

 But the optimal makespan must be at least as big as any job, thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗,
thus:

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ +
1
2
𝑇𝑇∗ =

3
2
𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 We have a set S of n sites, like towns
 We want to build k centers, like Starbucks
 We want to minimize the distance from a site to its closest

facility, called the covering radius
 Distances obey the following rules:
 d(s, s) = 0
 d(u, v) = d(v, u)
 d(x, y) + d(y, z) ≥ d(x, z)

 Put one facility in the middle of all the cities
 Keep adding centers to reduce the worst outlier
 First, it's not clear how to pick later centers
 Second, we can show that this could be arbitrarily bad with 2

cities and 2 centers
 First Starbucks would go right between the two cities
 Second one would go…where?
 Obviously, the best locations would be right on top of the cities

 Imagine that we knew that the maximum radius of cover was r
 We could use this knowledge to get a covering radius of no

more than 2r
 Algorithm:
 Pick any city, put a Starbucks there
 Remove any cities within 2r of the city
 Keep going as long as there are cities in the set

 Proof by contradiction:
 Suppose the opposite, that the algorithm returns more than k, but

for optimal sites C* of size k, the covering radius r(C*) ≤ r.
 Now we want to consider the elements c ∈ C, the sites returned by

the algorithm, and the elements c* ∈ C*, the optimal sites.
 Say that centers c and c* are close if d(c, c*) ≤ r.
 Every center c was a site in the original problem, so there has to be at

least one center c* that is close.
 We want to show that no optimal center c* can be close to two

different greedy centers c and c'.

 By the design of our algorithm, all centers c, c' ∈ C are more than
2r away from each other.

 Because of the triangle inequality, d(c, c*) + d(c*, c') ≥ d(c, c') > 2r.
 Thus, no c* could be within r of both without breaking this

inequality.
 That means every c ∈ C must have at least one close c* that no

other c' does.
 Thus, each c has exactly one c* not shared by any other, making

|C*| ≥ |C| > k, contradicting the assumption that C* has at most k
centers.

∎

 We know that r > 0 and r is less than or equal to maximum
distance between any two sites
 We could binary search between those two values

 Instead, our algorithm that magically knew r only used it to
pick sites 2r or further from existing centers

 So…all we really need to do is pick sites that are far away from
our existing centers

 Assume k < |S|, otherwise pick all sites
 Select any site s to start with and let C = {s}
 While |C| < k
 Find a site s ∈ S that is as far away as possible from every element in

C
 Add s to C

 Return C as the selected set of centers

 Claim:
 Our new greedy algorithm returns a set C of k points such that r(C) ≤

2r(C*) where C* is an optimal set of k points.
 Proof by contradiction:
 Assume we got a set C with k centers such that r(C) > 2r.
 There is some site s that is more than 2r from every center in C.
 At some point in the algorithm, we have only selected centers C'.
 We are just about to add center c'.

 We claim that c' is at least 2r away from all sites in C' because of
this inequality:
 d(c', C') ≥ d(s, C') ≥ d(s, C) > 2r

 So our greedy algorithm follows the first k iterations of the
algorithm that knew r since it always picks a center more than 2r
from previously selected centers.

 But we proved that algorithm would only pick more than k
centers if the optimal k centers did not have a covering radius of r.

 By the same contradiction, no site s can be further than 2r from a
center, so r(C) ≤ 2r.

∎

 Given:
 Set U of n elements
 Collection of sets S1, S2,…, Sm of subsets of U
 Each subset Si has a weight wi ≥ 0

 Find the subsets with smallest total weight whose union is
equal to all of U

 We want the most bang for our buck
 We want small weight sets with a lot of elements
 In other words, low cost per element

 So, we look at the value wi/|Si| for each set, and pick the
lowest such value set

 We keep doing that, but we only "count" the elements in each
set that still aren't covered

 Start with R = U and no sets selected
 While R≠ ∅
 Select set Si with minimum wi/|Si ∩ R|
 Delete set Si from R

 Return the selected sets

1

1

1

1

1 + ε 1 + ε
Algorithm

finds a total
weight of 4

Optimal is a
total weight of

2 + 2ε

 How good (or bad) is our set cover approximation in the worst
case?

 Let's think about the cost per item incurred by each set we add:
 cs = wi/|Si ∩ R| for all s ∈ Si ∩ R
 Imagine we assign that cost in the algorithm when we cover those

elements
 Clearly, these cs values end up being the total weight of our

solution C:

�
𝑠𝑠𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 To bound our analysis, we will use the idea of the harmonic
function:

𝐻𝐻 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑖𝑖

= 1 +
1
2

+
1
3

+ ⋯+
1
𝑛𝑛

 This function grows…slowly but infinitely
 You might recall that H(n) is Θ(log n)

 Claim:
 For every set Sk, ∑𝑠𝑠∈𝑆𝑆𝑘𝑘 𝑐𝑐𝑠𝑠 is at most H(|Sk|)wk

 Proof:
 For notation, assume |Sk| = d, and Sk = the first d elements of U
 In other words, Sk = {s1, s2, …, sd}
 Even better, let's assume the elements are labeled in the order that

they are assigned a cost 𝑐𝑐𝑠𝑠𝑗𝑗

 Consider the iteration when sj is covered by our algorithm, for
some j ≤ d.

 Before this iteration, sj, sj+1,…,sd∈ R
 This implies that |Sk ∩ R| is at least d – j + 1, making the average

cost of set Sk at most
𝑤𝑤𝑘𝑘

|𝑆𝑆𝑘𝑘 ∩ 𝑅𝑅|
≤

𝑤𝑤𝑘𝑘
𝑑𝑑 − 𝑗𝑗 + 1

 On this particular iteration, the greedy algorithm selects a set Si of
minimum average cost
 Thus, Si has an average cost no more than Sk

 The average cost of Si is what will get assigned to sj, so

𝑐𝑐𝑠𝑠𝑗𝑗 =
𝑤𝑤𝑖𝑖

|𝑆𝑆𝑖𝑖 ∩ 𝑅𝑅|
≤

𝑤𝑤𝑘𝑘
|𝑆𝑆𝑘𝑘 ∩ 𝑅𝑅|

≤
𝑤𝑤𝑘𝑘

𝑑𝑑 − 𝑗𝑗 + 1
 Summing up all the costs for every element s ∈ Sk

�
𝑠𝑠∈𝑠𝑠𝑘𝑘

𝑐𝑐𝑠𝑠 = �
𝑗𝑗=1

𝑑𝑑
𝑐𝑐𝑠𝑠𝑗𝑗 ≤�

𝑗𝑗=1

𝑑𝑑 𝑤𝑤𝑘𝑘
𝑑𝑑 − 𝑗𝑗 + 1

=
𝑤𝑤𝑘𝑘
𝑑𝑑

+
𝑤𝑤𝑘𝑘
𝑑𝑑 − 1

+ ⋯+
𝑤𝑤𝑘𝑘
1

= 𝐻𝐻(𝑑𝑑) � 𝑤𝑤𝑘𝑘
∎

 Let d* be the size of the largest set
 Claim:
 Set cover C found by our greedy algorithm has weight at most H(d*)

times the optimal weight w*
 Proof:
 The optimal set cover C* has weight 𝑤𝑤∗ = ∑𝑆𝑆𝑖𝑖∈𝐶𝐶∗ 𝑤𝑤𝑖𝑖
 By our previous proof:

𝑤𝑤𝑖𝑖 ≥
1

𝐻𝐻(𝑑𝑑∗)
�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠

 Since C* is a set cover

�
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 Putting it all, insanely, together:

𝑤𝑤∗ = �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

𝑤𝑤𝑖𝑖 ≥ �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

1
𝐻𝐻(𝑑𝑑∗) �

𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 ≥
1

𝐻𝐻 𝑑𝑑∗ �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠 =
1

𝐻𝐻 𝑑𝑑∗ �
𝑆𝑆𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖

∎

 All of that madness means that our approximation algorithm
to set cover might return a set cover costing O(log d*) times
the true optimal

 Worse, d* could be some constant fraction of n, making the
approximation an O(log n) times worse than optimal

 This approximation is worse than any constant
approximation, since our approximation actually will degrade
as n gets larger

 To top it off, there's even a proof that this is the best you can
approximate set cover, unless P = NP

 Approximating knapsack
 Read section 11.8

 Work on Assignment 7
 Due the last day of class

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Revenge of the logical warmup
	Load Balancing
	Load balancing
	Greedy algorithm
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Improved approximation algorithm
	Sorted greedy algorithm gets a makespan T ≤ 𝟑 𝟐 T*
	Proof continued
	Center Selection
	Bad greedy algorithm
	Insight for better greedy algorithm
	If more than k centers are returned, the best covering radius > r
	Proof continued
	Without knowing r
	Updated greedy algorithm
	Proof of approximation bound
	Proof continued
	Three Sentence Summary of Set Cover
	Set cover (optimization version)
	Algorithm design
	Greedy set cover algorithm
	Set cover example
	Analysis
	Unfortunately: math
	Bound on each set
	Proof continued
	Proof continued
	Final approximation bound
	Approximation bound continued
	Log approximation
	Upcoming
	Next time…
	Reminders

