Week 13 - Wednesday

COMP 4500

Last time

- What did we talk about last time?
- A little bit about computability
- Approximation algorithms
- Started load balancing

Questions?

Assignment 7

Logical warmup

- A sociologist named McSnurd gave a talk about a community that has clubs with the following attributes:
 - A person can belong to more than one club
 - Each club is named after a person
 - No two different clubs are named after the same person
 - Every person has a club named after him or her
 - A person may or may not belong to the club named after them
 - If they do, that person is called sociable
 - If they don't, that person is called unsociable
 - Perhaps surprisingly, there is a club whose entire membership is made up of all of the unsociable people
- Do you believe McSnurd's description?

Revenge of the logical warmup

- Another sociologist named McSnuff described a similar community:
 - As before, there is the same number of clubs as people, and each club is named after exactly one person
 - However, a person can be a member of a club openly or secretly
 - If a person is not openly a member of the club named after them, they are **suspicious**
 - If a person is secretly a member of the club named after them, they are a **spy**
 - Perhaps surprisingly, there is a club whose entire membership is made up of all the suspicious people
- Do you believe McSnuff's description?
- Do you know whether or not there is at least one spy in the community?

Load Balancing

Load balancing

- You have *m* machines *M*₁, *M*₂,...,*M_m*
- You have *n* jobs
- Each job j has a processing time t_j
 We can assign jobs A(i) to machine M_i
 The total time that M_i needs to work is:

$$T_i = \sum_{j \in A(i)} t_j$$

- We want to minimize the makespan, which is just the longest T_i
- In other words, we want the last machine running to stop running as early as possible
- Unfortunately, doing so in NP-hard

Greedy algorithm

- We can use a simple greedy algorithm for assigning jobs:
 - For each job j, assign it to the machine that has the shortest completion time so far

Greedy algorithm gets a makespan $T \le 2T^*$

Proof:

- Let *M_i* be the machine that get the maximum load *T* in the greedy assignment
- Let *j* be the last job assigned to *M_i*
- When j was assigned to M_{i} , it had the smallest load of any machine, namely $T_i t_j$
- Thus, every machine had load at least $T_i t_j$

$$\sum_{k=1}^{m} T_k \ge m \left(T_i - t_j \right)$$
$$T_i - t_j \le \frac{1}{m} \sum_{k=1}^{m} T_k$$

Proof continued

• Since
$$\sum_{k=1}^{m} T_k = \sum_{i=1}^{n} j_i$$
 and $\frac{1}{m} \sum_{i=1}^{n} j_i \le T^*$
 $T_i - t_j \le T^*$

But the optimal makespan must be at least as big as any job, thus t_j ≤ T*, thus: T_i = (T_i − t_j) + t_j ≤ T* + T* = 2T*
Since our makespan T = T_i, the proof is done.

Improved approximation algorithm

- We use a similar greedy algorithm
- However, we first sort all the jobs in descending order
- Now, $\boldsymbol{t}_1 \geq \boldsymbol{t}_2 \geq \ldots \geq \boldsymbol{t}_n$
- If there are *m* jobs or fewer, our algorithm will be optimal, since each machine will get at most one job
- If there are more than m jobs, $T^* \ge 2t_{m+1}$
 - Consider the first *m* + 1 sorted jobs.
 - Each takes at least t_{m+1} time. Since there are at least m + 1 jobs and only m machines, one machine will get at least two of these jobs.
 - That machine will have processing time at least $2t_{m+1}$.

Sorted greedy algorithm gets a makespan $T \leq \frac{3}{2}T^*$

Proof:

- Let *M_i* be the machine that get the maximum load *T* in the greedy assignment
- Let j be the last job assigned to M_{i} , and assume that M_{i} has at least 2 jobs
- When j was assigned to M_i, it had the smallest load of any machine, namely T_i t_j
- Thus, every machine had load at least $T_i t_j$

$$\sum_{k=1}^{m} T_k \ge m \left(T_i - t_j \right)$$
$$T_i - t_j \le \frac{1}{m} \sum_{k=1}^{m} T_k$$

Proof continued

• Since
$$\sum_{k=1}^{m} T_k = \sum_{i=1}^{n} j_i$$
 and $\frac{1}{m} \sum_{i=1}^{n} j_i \leq T^*$
 $T_i - t_i \leq T^*$

- Note that j ≥ m + 1, since the first m jobs will be put on m different machines
- Thus, $t_j \le t_{m+1} \le \frac{1}{2}T^*$
- But the optimal makespan must be at least as big as any job, thus $t_j \leq T^*$, thus:

$$T_i = (T_i - t_j) + t_j \le T^* + \frac{1}{2}T^* = \frac{3}{2}T^*$$

Since our makespan $T = T_i$, the proof is done.

Center Selection

- We have a set S of n sites, like towns
- We want to build *k* centers, like Starbucks
- We want to minimize the distance from a site to its closest facility, called the covering radius
- Distances obey the following rules:
 - **d**(**s**, **s**) = 0
 - d(u, v) = d(v, u)
 - $d(x, y) + d(y, z) \ge d(x, z)$

Bad greedy algorithm

- Put one facility in the middle of all the cities
- Keep adding centers to reduce the worst outlier
- First, it's not clear how to pick later centers
- Second, we can show that this could be arbitrarily bad with 2 cities and 2 centers
 - First Starbucks would go right between the two cities
 - Second one would go...where?
 - Obviously, the best locations would be right on top of the cities

Insight for better greedy algorithm

- Imagine that we knew that the maximum radius of cover was r
- We could use this knowledge to get a covering radius of no more than 2r
- Algorithm:
 - Pick any city, put a Starbucks there
 - Remove any cities within 2r of the city
 - Keep going as long as there are cities in the set

If more than k centers are returned, the best covering radius > r

Proof by contradiction:

- Suppose the opposite, that the algorithm returns more than k, but for optimal sites C^* of size k, the covering radius $r(C^*) \le r$.
- Now we want to consider the elements c ∈ C, the sites returned by the algorithm, and the elements c* ∈ C*, the optimal sites.
- Say that centers c and c^* are close if $d(c, c^*) \le r$.
- Every center *c* was a site in the original problem, so there has to be at least one center *c** that is close.
- We want to show that no optimal center c* can be close to two different greedy centers c and c'.

Proof continued

- By the design of our algorithm, all centers c, c' ∈ C are more than 2r away from each other.
- Because of the triangle inequality, $d(c, c^*) + d(c^*, c') \ge d(c, c') > 2r$.
- Thus, no c* could be within r of both without breaking this inequality.
- That means every c ∈ C must have at least one close c* that no other c' does.
- Thus, each c has exactly one c* not shared by any other, making |C*| ≥ |C| > k, contradicting the assumption that C* has at most k centers.

Without knowing r

- We know that r > o and r is less than or equal to maximum distance between any two sites
 - We could binary search between those two values
- Instead, our algorithm that magically knew r only used it to pick sites 2r or further from existing centers
- So...all we really need to do is pick sites that are far away from our existing centers

Updated greedy algorithm

- Assume k < |S|, otherwise pick all sites
- Select any site s to start with and let C = {s}
- While |*C*| < *k*
 - Find a site *s* ∈ *S* that is as far away as possible from every element in
 C
 - Add *s* to *C*
- Return C as the selected set of centers

Proof of approximation bound

Claim:

• Our new greedy algorithm returns a set C of k points such that $r(C) \le 2r(C^*)$ where C^* is an optimal set of k points.

Proof by contradiction:

- Assume we got a set C with k centers such that r(C) > 2r.
- There is some site **s** that is more than 2**r** from every center in **C**.
- At some point in the algorithm, we have only selected centers **C**'.
- We are just about to add center c'.

Proof continued

- We claim that c' is at least 2r away from all sites in C' because of this inequality:
 - $d(c', C') \ge d(s, C') \ge d(s, C) > 2r$
- So our greedy algorithm follows the first k iterations of the algorithm that knew r since it always picks a center more than 2r from previously selected centers.
- But we proved that algorithm would only pick more than k centers if the optimal k centers did not have a covering radius of r.
- By the same contradiction, no site *s* can be further than 2r from a center, so $r(C) \le 2r$.

Three Sentence Summary of Set Cover

Set cover (optimization version)

Given:

- Set U of n elements
- Collection of sets $S_1, S_2, ..., S_m$ of subsets of U
- Each subset S_i has a weight $w_i \ge 0$
- Find the subsets with smallest total weight whose union is equal to all of U

Algorithm design

- We want the most bang for our buck
- We want small weight sets with a lot of elements
 - In other words, low cost per element
- So, we look at the value w_i/|S_i| for each set, and pick the lowest such value set
- We keep doing that, but we only "count" the elements in each set that still aren't covered

Greedy set cover algorithm

- Start with R = U and no sets selected
- While $\mathbf{R} \neq \mathbf{\emptyset}$
 - Select set S_i with minimum $w_i / |S_i \cap R|$
 - Delete set S_i from R
- Return the selected sets

Set cover example

Algorithm finds a total weight of 4

Optimal is a total weight of 2 + 2 \varepsilon

Analysis

- How good (or bad) is our set cover approximation in the worst case?
- Let's think about the cost per item incurred by each set we add:
 - $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$
 - Imagine we assign that cost in the algorithm when we cover those elements
- Clearly, these c_s values end up being the total weight of our solution C:

$$\sum_{s_i \in C} w_i = \sum_{s \in U} c_s$$

Unfortunately: math

To bound our analysis, we will use the idea of the harmonic function:

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

- This function grows...slowly but infinitely
- You might recall that H(n) is Θ(log n)

Bound on each set

Claim:

• For every set $S_{k'} \sum_{s \in S_k} c_s$ is at most $H(|S_k|) w_k$

Proof:

- For notation, assume $|S_k| = d$, and $S_k =$ the first d elements of U
- In other words, $S_k = \{s_1, s_2, ..., s_d\}$
- Even better, let's assume the elements are labeled in the order that they are assigned a cost c_{si}

Proof continued

- Consider the iteration when s_i is covered by our algorithm, for some $j \leq d$.
- Before this iteration, s_j, s_{j+1},...,s_d ∈ R
 This implies that |S_k ∩ R| is at least d − j + 1, making the average cost of set S_{μ} at most

$$\frac{w_k}{|S_k \cap R|} \le \frac{w_k}{|d-j|+1|}$$

- On this particular iteration, the greedy algorithm selects a set S; of minimum average cost
 - Thus, S; has an average cost no more than Sk

Proof continued

The average cost of S_i is what will get assigned to s_i so $c_{s_j} = \frac{w_i}{|S_i \cap R|} \le \frac{w_k}{|S_k \cap R|} \le \frac{w_k}{d - i + 1}$ • Summing up all the costs for every element $s \in S_k$ $\sum_{s \in C} c_s = \sum_{j=1}^d c_{s_j} \le \sum_{j=1}^d \frac{w_k}{d-j+1}$ $s \in S_k$ $=\frac{w_k}{d}+\frac{w_k}{d-1}+\cdots+\frac{w_k}{1}=H(d)\cdot w_k$

Final approximation bound

- Let d* be the size of the largest set
- Claim:
 - Set cover C found by our greedy algorithm has weight at most H(d*) times the optimal weight w*
- Proof:
 - The optimal set cover C^* has weight $w^* = \sum_{S_i \in C^*} w_i$
 - By our previous proof:

$$w_i \ge \frac{1}{H(d^*)} \sum_{s \in S_i} c_s$$

Approximation bound continued

Since C* is a set cover

 $\sum_{S_i \in C^*} \sum_{s \in S_i} c_s = \sum_{s \in U} c_s$ • Putting it all, insanely, together: $w^* = \sum_{S_i \in C^*} w_i \ge \sum_{S_i \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_i} c_s \ge \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i$

Log approximation

- All of that madness means that our approximation algorithm to set cover might return a set cover costing O(log *d**) times the true optimal
- Worse, d* could be some constant fraction of n, making the approximation an O(log n) times worse than optimal
- This approximation is worse than any constant approximation, since our approximation actually will degrade as n gets larger
- To top it off, there's even a proof that this is the best you can approximate set cover, unless P = NP

Upcoming

Next time...

- Approximating knapsack
- Read section 11.8

Reminders

- Work on Assignment 7
 - Due the last day of class