Week 13 - Wednesday

COMP 4500

= What did we talk about last time?
= A little bit about computability

= Approximation algorithms

= Started load balancing

Questions?

Assignment 7

= A sociologist named McSnurd gave a talk about a community that
has clubs with the following attributes:

= A person can belong to more than one club

= Each club is named after a person

= No two different clubs are named after the same person
= Every person has a club named after him or her

= A person may or may not belong to the club named after them
If they do, that person is called sociable
If they don't, that person is called unsociable
= Perhaps surprisingly, there is a club whose entire membership is made up
of all of the unsociable people
= Do you believe McSnurd's description?

= Another sociologist named McSnuff described a similar
community:
= As before, there is the same number of clubs as people, and each clubis
named after exactly one person

= However, a person can be a member of a club openly or secretly
If a person is not openly a member of the club named after them, they are suspicious
If a person is secretly a member of the club named after them, they are a spy
= Perhaps surprisingly, there is a club whose entire membership is made up
of all the suspicious people
= Do you believe McSnuff's description?
= Do you know whether or not there is at least one spy in the

community?

Load Balancing

You have m machinesM_M,,... M _
You have n jobs

Each job j has a processing time t;

We can assign jobs A(r) to machine M,
The total time that M; needs to work is:

Ti: z tj

JEA(D)
= We want to minimize the makespan, which is just the longest T;
= In other words, we want the last machine running to stop running
as early as possible

= Unfortunately, doing so in NP-hard

= We can use a simple greedy algorithm for assigning jobs:

= For each job, assign it to the machine that has the shortest
completion time so far

= Proof:

= Let M, be the machine that get the maximum load T in the greedy assignment
= Letjbe the last job assigned to M;
= When jwas assigned to M, it had the smallest load of any machine, namely T, -

t;

= Thus, every machine had Ioad atleast T;—t

sz>m(T - t)

4<—2n

= Since Yt T = Xz Ji and %Z?ﬂji <T"
T;—t; <T"
= But the optimal makespan must be at least as big as any job,
thust; < T7, thus:
T;=(T;—tj)+ t; <T*+T*=2T"
= Since our makespan T = T;, the proof is done.
_

We use a similar greedy algorithm

However, we first sort all the jobs in descending order

Now, t. 2t >...>¢,

If there are m jobs or fewer, our algorithm will be optimal, since
each machine will get at most one job

If there are more than mjobs, T* = 2t,,,41

= Consider the first m + 1 sorted jobs.

= Each takes at least t_ .. time. Since there are at least m + 1 jobs and only m
machines, one machine will get at least two of these jobs.

= That machine will have processing time at least 2t ..

Proof:

Let M; be the machine that get the maximum load T in the greedy assignment
Let j be the last job assigned to M,, and assume that M; has at least 2 jobs
When j was assigned to M,, it had the smallest load of any machine, namely T; -

t;

Thus, every machine had Ioad atleast T;—t

sz>m(T - t)

SR

= Since Yxzy Ty = Xij=4ji and %Z?ﬂji =T’
T,—t; <T"
= Note thatj=m + 1, since the first m jobs will be put on m different
machines
o Thus, t; <ty <-T°
= Bhut the optimal maiespan must be at least as big as any job, thust; < T”,
thus:

1 3
Ti=(Ti—t)+ 4 <T +T" =T
= Since our makespan T = T;, the proof is done.

= We have a set S of n sites, like towns

= We want to build k centers, like Starbucks

= We want to minimize the distance from a site to its closest
facility, called the covering radius

= Distances obey the following rules:

= d(s,s)=0

= d(u, v) =d(v, v)
= d(x, y) +d(y, z) =2 d(x, z)

Put one facility in the middle of all the cities

Keep adding centers to reduce the worst outlier

First, it's not clear how to pick later centers

Second, we can show that this could be arbitrarily bad with 2
cities and 2 centers

= First Starbucks would go right between the two cities
= Second one would go...where?
= Obviously, the best locations would be right on top of the cities

= Imagine that we knew that the maximum radius of cover was r

= We could use this knowledge to get a covering radius of no
more than 2r

= Algorithm:
= Pick any city, put a Starbucks there
= Remove any cities within 2r of the city
= Keep going as long as there are cities in the set

= Proof by contradiction:

= Suppose the opposite, that the algorithm returns more than k, but
for optimal sites C* of size k, the covering radius r(C*) <.

= Now we want to consider the elements c € C, the sites returned by
the algorithm, and the elements ¢* € C*, the optimal sites.

= Say that centers cand c* are close if d(c, c*) <.

= Every center ¢ was a site in the original problem, so there has to be at
least one center c¢* that is close.

= We want to show that no optimal center ¢* can be close to two
different greedy centers cand c'.

= By the design of our algorithm, all centers ¢, ¢' € C are more than
2r away from each other.

= Because of the triangle inequality, d(c, ¢*) + d(c*, ¢') = d(c, c¢') > 2r.

= Thus, no ¢* could be within r of both without breaking this
inequality.

= That means every ¢ € C must have at least one close ¢* that no
other c¢'does.

= Thus, each ¢ has exactly one ¢* not shared by any other, making
|C*| = |C| > k, contradicting the assumption that C* has at most k
centers.

_

= We know that r> o and ris less than or equal to maximum
distance between any two sites

= We could binary search between those two values

= Instead, our algorithm that magically knew ronly used it to
pick sites 2r or further from existing centers

= So...all we really need to do is pick sites that are far away from
our existing centers

= Assume k < |S|, otherwise pick all sites
= Select any site s to start with and let C = {s}
= While |C| < k
= Find a site s € S that is as far away as possible from every element in
C

» Addsto C
= Return C as the selected set of centers

= Claim:

= Our new greedy algorithm returns a set C of k points such that r(C) <
2r(C*) where C* is an optimal set of k points.

= Proof by contradiction:
= Assume we got a set C with k centers such that r(C) > 2r.
= There is some site s that is more than 2r from every centerin C.
= At some pointin the algorithm, we have only selected centers C".
= We are just about to add center c'.

= We claim that ¢'is at least 2r away from all sites in C' because of
this inequality:
= d(c', C)=d(s, C)=d(s, C) > 2r

= So our greedy algorithm follows the first k iterations of the
algorithm that knew r since it always picks a center more than 2r
from previously selected centers.

= But we proved that algorithm would only pick more than k
centers if the optimal k centers did not have a covering radius of r.

= By the same contradiction, no site s can be further than 2r from a
center, so r(C) < 2r.

_

Three Sentence Summary of Set Cover

= Given:

= Set U of nelements
= Collectionofsets S, S,,..., S,, of subsets of U

= Each subset S; has a weight w; > 0
= Find the subsets with smallest total weight whose union is

equal to all of U

= We want the most bang for our buck
= We want small weight sets with a lot of elements

= In other words, low cost per element

= So, we look at the value w//|S|| for each set, and pick the
lowest such value set

= We keep doing that, but we only "count" the elementsin each
set that still aren't covered

= Start with R = U and no sets selected
= WhileR #= @

= Select set S; with minimum w;/|S; N R
= Delete set S;from R
= Return the selected sets

1+E&

@ © o ©

1+E&

O
O
O
O

Algorithm
finds a total
weight of 4

Optimalis a
total weight of
2 + 2€

= How good (or bad) is our set cover approximation in the worst
case?

= Let's think about the cost per item incurred by each set we add:
= c.=w{|S;NR|foralls€ES;,NR
= Imagine we assign that cost in the algorithm when we cover those

elements
= Clearly, these c, values end up being the total weight of our

solution C:

Y=Y

S;€C SeU

= To bound our analysis, we will use the idea of the harmonic
function:

1 1 1 1
p=Yto14lili]
: 11 2 3 n
1=
= This function grows...slowly but infinitely

= You might recall that H(n) is ©(log n)

= Claim:

= For every set Sy, Xises, Cs is at most H(|S,|)w,

= Proof:
= For notation, assume |S,| =d, and S, = the first d elements of U
= In other words, S, =1{s,, s,, ..., 5}

= Even better, let's assume the elements are labeled in the order that
they are assigned a cost Cs;

Consider the iteration when s; is covered by our algorithm, for
somej=<d.

Before this iteration, s; s;,.,...,S; € R

This implies that |Sk N R| s at least d — —j + 1, making the average
cost of set S, at most

Wi, < Wi,
S, NR[~d—j+1

On this particular iteration, the greedy algorithm selects a set S; of
minimum average cost

= Thus, S; has an average cost no more than S,

= The average cost of S; is what will get assigned to s;, so

jl
w; w w
c, = l < k < .k
I |5 nR| T[Sy NR| d—j+1
= Summing up all the costs for every element SES,

XS Z] W=

SES
_ Yk g Yk _
— r Id—ll + 1 H(d) Wi,

= Let d* be the size of the largest set
= Claim:

= Set cover C found by our greedy algorithm has weight at most H(d*)
times the optimal weight w*

= Proof:
= The optimal set cover C* has weight w* =)¢ ccx w;
= By our previous proof:

1
. >
Vi = Hd") Z s

SES;

= Since C* is a set cover

IPREDR
S;EC* SES; seU
= Putting it all, insanely, together:

Z Wi = Z H(d)zCS_H(d)ZCS_H(d)ZW‘

S;EC™ S;ECT SES; S;€eC

= All of that madness means that our approximation algorithm
to set cover might return a set cover costing O(log d*) times
the true optimal

= Worse, d* could be some constant fraction of n, making the

approximation an O(log n) times worse than optimal

= This approximation is worse than any constant

approximation, since our approximation actually will degrade
as n gets larger

= To top it off, there's even a proof that this is the best you can
approximate set cover, unless P = NP

Upcoming

= Approximating knapsack
= Read section 11.8

= Work on Assignment 7

= Due the last day of class

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Revenge of the logical warmup
	Load Balancing
	Load balancing
	Greedy algorithm
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Improved approximation algorithm
	Sorted greedy algorithm gets a makespan T ≤ 𝟑 𝟐 T*
	Proof continued
	Center Selection
	Bad greedy algorithm
	Insight for better greedy algorithm
	If more than k centers are returned, the best covering radius > r
	Proof continued
	Without knowing r
	Updated greedy algorithm
	Proof of approximation bound
	Proof continued
	Three Sentence Summary of Set Cover
	Set cover (optimization version)
	Algorithm design
	Greedy set cover algorithm
	Set cover example
	Analysis
	Unfortunately: math
	Bound on each set
	Proof continued
	Proof continued
	Final approximation bound
	Approximation bound continued
	Log approximation
	Upcoming
	Next time…
	Reminders

